

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Molecular Constants of MnF_6^{-2} Anion

M. L. Mehta^a

^a Department of Physics, University of Jodhpur, Jodhpur, India

To cite this Article Mehta, M. L. (1971) 'Molecular Constants of MnF_6^{-2} Anion', *Spectroscopy Letters*, 4: 12, 395 — 398

To link to this Article: DOI: 10.1080/00387017108064672

URL: <http://dx.doi.org/10.1080/00387017108064672>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

MOLECULAR CONSTANTS OF MnF_6^{-2} ANIONKEY WORDS: MOLECULAR CONSTANTS

M. L. Mehta
 Department of Physics, University of Jodhpur
 Bhagat ki kothi, Jodhpur, India.

INTRODUCTION

The normal coordinate analysis of XY_6 type of anions and molecules employing different force fields is well established.^{1,2} Recently, the vibrational spectra and complete frequency assignment of MnF_6^{-2} has been reported by Flint.³ Using the available vibrational data the force constants have been evaluated employing three potential models viz. general valence force field (GVFF), Urey-Bradley force field (UBFF) and orbital valence force field (OVFF). The mean amplitudes of vibration and Bastiansen-Morino shrinkages have also been computed at two temperatures.

Assuming that the anion possesses O_h symmetry, three Raman active modes (ν_1, ν_2 and ν_3), two infrared active modes (ν_3 and ν_4) and one inactive mode (ν_6) are expected for the hexahalide. These normal modes of vibration are theoretically classified as,

$$\Gamma_{\text{vib.}} = a_{1g} + e_g + f_{1u} + f_{2g} + f_{2u}.$$

FORCE CONSTANT EVALUATION

Wilson's GF matrix method⁴ has been used for the normal coordinate analysis. The kinetic and potential energy

matrices have been derived by the standard procedures⁴. Using the symmetry considerations the secular equation $|GF - E\lambda| = 0$ is factorised into a two dimensional and four one dimensional secular equations. For the solution of the inverse eigen value problem of two or higher degree, the number of force constants to be determined exceeds the observed modes. Under this circumstance, several authors⁵⁻⁷ have proposed mathematical constraints for the evaluation of complete and correct physical force field. Out of these, Fadini's method⁶ gives best agreement with the experimentally observed values and Müller's method⁷ also gives quite satisfactory results provided that the mass coupling is small.

For the evaluation of the force constants using GVFF, the method of Fadini⁶ and method of Müller⁷ have been used for the approximate solution of two dimensional equation leading to seven independent force constants. To overcome the difficulty of complete and unique solution of valence force field the simplified force fields viz. OVFF⁸ and UBFF⁹ have been proposed. In these force fields, the number of vibrational frequencies exceeds the number of force constants. Therefore, the method of least square has been used to adjust the force constants to fit the observed frequencies. A computer programme for an IBM 1620 was used for this purpose. The calculated frequencies using OVFF and UBFF along with the observed frequencies are given in Table 1 and calculated force constants using GVFF, UBFF, and OVFF are given in Table 2.

MOLECULAR CONSTANTS OF MnF_6^{-2} ANIONTABLE 1
OBSERVED AND CALCULATED FREQUENCIES IN cm^{-1}

Anion	Frequency	ν_1	ν_2	ν_3	ν_4	ν_5	ν_6
MnF_6^{-2}	Observed	600	510	630	338	308	260
	OVFF	590	501	648	335	312	260
	UBFF	589	504	649	310	338	245

Recently, the vibrational spectra and normal coordinate analysis of MnF_6^{-2} employing GVFF and OVFF have also been reported by Asprey et al.¹⁰ They have used an arbitrary assumption $F_{34} = f_{r\alpha} - f'_{r\alpha} = 0.03$ mdyne/ \AA^0 resulting in an incorrect set of force constants. From the experimental results of Kim et al.² it is clear that F_{34} is not constant for all the hexafluorides, moreover it is generally higher than 0.03 mdyne/ \AA^0 . Comparing the percentage deviation of stretching (ν_1 , ν_2 and ν_3) and deformation (ν_6 , ν_4 and ν_5) vibrations our results show an improvement over that of Asprey et al.¹⁰ using OVFF. Our results of UBFF are also encouraging.

TABLE 2
FORCE CONSTANTS IN mdyne/ \AA^0

Valence force constants	Muller	Fadini	Force constants	OVFF	UBFF
f_r	3.07	2.93			
f_{rr}	0.19	0.19	K	2.39	2.42
f'_{rr}	0.21	0.35	H or D	0.36	0.14
$f_{r\alpha} - f'_{r\alpha}$	0.28	0.14			
$f_{\alpha\alpha} - f''_{\alpha\alpha}$	0.36	0.37	F	0.38	0.37
$f_{\alpha\alpha} - f'''_{\alpha\alpha}$	-0.01	-0.01	F'	0.01	0.01
$f'_{\alpha\alpha} - f''''_{\alpha\alpha}$	-0.13	-0.14			

MEAN AMPLITUDES OF VIBRATION AND BASTIANSEN-MORINO SHRINKAGES

These have been calculated using the secular equation $|\sum G^{-1} - \Delta E| = 0$ and Müller's method.⁷ Interatomic distance Mn-F is taken as 2.11992 \AA^{12} . For the expressions of mean amplitudes of vibration u and Bastiansen-Morino shrinkages δ see i.e. Bye et al.¹¹ The calculated quantities are given in Table 3.

TABLE 3
MEAN AMPLITUDES OF VIBRATION u IN \AA AND BASTIANSEN-MORINO SHRINKAGES δ IN \AA

Distances and quantities	$T = 0^\circ\text{K}$	$T = 298^\circ\text{K}$
$u(X - Y)$	0.0449	0.0455
$u(Y...Y \text{ short})$	0.0685	0.0833
$u(Y...Y \text{ long})$	0.0574	0.0621
$\delta(Y...Y \text{ short})$	0.00061	0.00091
$\delta(Y...Y \text{ long})$	0.00085	0.00125

The calculated results show - $u(X-Y) < u(Y...Y \text{ long}) < u(Y...Y \text{ short})$ and $\delta(Y...Y \text{ short}) < \delta(Y...Y \text{ long})$ at both the temperatures and increase with it.

REFERENCES

1. M. N. Avasthi and M. L. Mehta, Spectry. Letters 2, 327 (1969), J. Mol. Struct. 7, 301 (1971) and references therein.
2. H. Kim, P. A. Souder and H. H. Claassen, J. Mol. Spectry. 26, 46 (1968).
3. C. D. Flint, Chem. Commun. 482 (1970).
4. E. B. Wilson, Jr., J. C. Decius and P. C. Cross, Molecular vibrations, McGraw Hill, New York 1955.
5. M. Pfeiffer, J. Mol. Spectry. 31, 181 (1969) and references therein.
6. A. Fadini, Z. Naturforsch. 21a, 426 (1966).
7. A. Muller, Z. Phys. Chem. (Leipzig) 328, 116 (1968).
8. D. C. Heath and J. W. Linnett, Tran. Faraday Soc. 45, 264 (1949).
9. H. C. Urey and D. C. Bradley, Phys. Rev. 38, 1969 (1931).
10. L. B. Asprey, M. J. Reisfeld and N. A. Matwiyoff, J. Mol. Spectry. 34, 361 (1970).
11. B. H. Bye and S. J. Cyvin, Acta Chem. Scand. 7, 1807 (1963).
12. L. L. Lohar, Jr., J. Chem. Phys. 55, 27 (1971).